Leaders from OM Latin America discuss the challenges and opportunities of ministry in the region during their annual meetings in September.
Gildelia Moromisato is starting a Freedom Climb initiative in Brazil after attending the annual conference of the OM ministry focused on oppressed women and children.
Team members of AIDSLink Brazil conduct workshops on HIV and AIDS in Zambia.
Participants of a short-term outreach event in July demonstrated God's love and plan for salvation with people in Manaus, the capital of the Amazonas State.
Dressed as clowns and carrying posters, students of OM Brazil’s missions training protested against corruption in São José dos Campos on 23 March.
An AIDSLink Brazil team holds an AIDS awareness workshop at a centre for the rehabilitation of drug users and sex workers in São Paulo.
OM Brazil challenges over 400 young people to be part of a generation taking the glory of God to all nations.
Several Brazilians are now interested in serving full time with OM after attending a missions conference hosted by OM in Rio de Janeiro.
Upon returning from an outreach to Mozambique, Alice Aleixo was ready to go again. No one imagined that malaria would make this her last trip.
The story of Jo, a young mother with an incurable disease, touched the hearts of OM volunteers ministering in a hospital in Brazil.
TeenStreet challenges teens in Brazil to have a true friendship with Jesus and reflect His love.
"Going into overseas ministry made me face reality", says 28-year old Vanilda Vaz from Brazil. She has been travelling through Latin America to tell as many people as possible about her work in South Asia.
Here you find the traffic statistics for the Berlin Airports Tegel and Schoenefeld. The traffic statistics are compiled monthly and contain information on flight movements, passengers, air freight and airmail.
Here you find the traffic statistics for the Berlin Airports Tegel and Schoenefeld. The traffic statistics are compiled monthly and contain information on flight movements, passengers, air freight and airmail.
Here you find the traffic statistics for the Berlin Airports Tegel and Schoenefeld. The traffic statistics are compiled monthly and contain information on flight movements, passengers, air freight and airmail.
Here you find the traffic statistics for the Berlin Airports Tegel and Schoenefeld. The traffic statistics are compiled monthly and contain information on flight movements, passengers, air freight and airmail.
Here you find the traffic statistics for the Berlin Airports Tegel and Schoenefeld. The traffic statistics are compiled monthly and contain information on flight movements, passengers, air freight and airmail.
Cyclophilins play a key role in the lifecycle of coronaviruses. Alisporivir (Debio 025) is a non-immunosuppressive analogue of cyclosporin A with potent cyclophilin inhibition properties. Alisporivir reduced SARS-CoV-2 RNA production in a dose-dependent manner in VeroE6 cell line, with an EC50 of 0.46±0.04 μM. Alisporivir inhibited a post-entry step of the SARS-CoV-2 lifecycle. These results justify that a proof-of-concept Phase 2 trial be rapidly conducted with alisporivir in patients with SARS-CoV-2 infection.
Background
Optimal concentrations of unbound antimicrobials are essential for maximum microbiological effect. Although hypoalbuminemia and albumin fluid resuscitation are common in critical care, the effects of different albumin concentrations on the unbound concentrations of highly protein-bound antimicrobials are not known. The aim of this study was to compare effects of different albumin states on total and unbound concentrations of ertapenem and ceftriaxone using an ovine model.
Methods
Design
Prospective, three phase intervention observational study.
Subjects
Healthy Merino sheep.
Interventions
Eight sheep were subject to three experimental phases; normoalbuminemia, hypoalbuminemia using plasmapheresis and albumin replacement using a 25% albumin solution. In each phase, ceftriaxone 40 mg/kg and ertapenem 15 mg/kg were given intravenously. Blood samples were collected at pre-defined intervals and analyzed using an ultra-high-performance liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters such as area under the curve (AUC0-24), plasma clearance (CL) and apparent volume of distribution in the terminal phase (Vd) were estimated and compared between the phases.
Results
The protein and albumin concentrations were significantly different between phases. Hypoalbuminemia resulted in a significantly lower AUC0-24 and higher CL of total and unbound concentrations of ceftriaxone compared to the other phases. Whereas albumin replacement led to higher AUC0-24 and lower CL compared to other phases for both drugs. The Vd for total drug concentrations for both drugs were significantly lower with albumin replacement.
Conclusions
For highly protein-bound drugs such as ceftriaxone and ertapenem, both hypoalbuminemia and albumin replacement may affect unbound drug exposure.
Earlier genetic and inhibitor studies have shown that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new anti-malarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum. We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.
The off-label use of third generation cephalosporin (3GC) during in ovo vaccination or vaccination of newly hatched chicks, was a common practice worldwide. CMY-2-producing Escherichia coli have been disseminated among broiler production. The objectives of this study were to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan because grandparent stock and parent stock were imported in Japan. We examined the whole genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002-2014. The predominant 3GC-resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-I (n=21; 24.1%), IncI (n=12; 13.8%), IncB/O/K/Z (n=28; 32.2%), and IncC (n=22; 25.3%). Those plasmids were subjected to gene clustering and network analyses and plasmid multi-locus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single nucleotide variant (SNV)-based phylogenetic analysis.
MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. ST429 harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broiler in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI and pST12-IncI1-I and pST3-IncC were prevalent in western Japan. pST12-IncI1-I and pST3-IncC were closely related to those detected in E. coli isolates from chicken in American continent, whereas 26 IncB/O/K/Z were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria in and out of Japan.
CYP450 enzymes are involved in biotransformation of chloroquine (CQ), but the role of the different metabolism profiles of this drug has not been properly investigated in relation to P. vivax recurrences. To investigate the influence of CYPs genotypes associated with CQ-metabolism on early recurrence rates of P. vivax, a case-control study was carried out. Cases included patients presenting an early recurrence (CQ-recurrent), defined as recurrence during the first 28 days after initial infection, plasma concentrations of CQ plus desethylchloroquine (DCQ, the major CQ metabolite) higher than 100 ng/mL. A control (CQ-responsive) with no parasite recurrence over the follow-up was also included. CQ and DCQ plasma levels were measured on Day 28. CQ CYPs (CYP2C8, CYP3A4 and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify CQ and DCQ efficacy in P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and controls for CYP2C8 (OR=1.45, 95% CI=0.51-4.14, p=0.570), CYP3A4 (OR=2.38, 95% CI=0.92-6.19, p=0.105) and CYP3A5 (OR=4.17, 95% CI=0.79-22.04, p=1.038) genes. DCQ levels were higher than CQ, regardless of the genotype. Regarding the DCQ/CQ rate, there was no difference between groups or between those patients who had a normal or mutant genotype. DCQ and CQ showed similar efficacy ex vivo. CYPs genotypes had no influence on early recurrence rates. Similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite presence of alleles associated with slow metabolism.
Peroxidases are a group of heterogeneous family of enzyme that plays diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defence system of Leishmania. In view of developing new and novel therapeutics, we have performed in silico studies in order to search for ligand library and identification of new drug candidates and its physiological role against promastigotes and intracellular amastigotes of Leishmania donovani. Our results demonstrated that the selected inhibitor ZINC96021026 has significant anti-leishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of Valosin-containing protein (VCP) or p97, a member of AAA-ATPase protein family which was derived from the scaffold of DBeQ, targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus have broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibits the parasite's ascorbate peroxidase leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.
Drug repositioning is the only feasible option to address the COVID-19 global challenge immediately. We screened a panel of 48 FDA-approved drugs against SARS-CoV-2 which were pre-selected by an assay of SARS-CoV and identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low micromolar IC50s and in particular, two FDA-approved drugs - niclosamide and ciclesonide – were notable in some respects.
We thank Kim and colleagues for their interest in our study....
Ebola Virus (EBOV) is among the most devastating pathogens causing fatal hemorrhagic fever in humans. The 2013–2016 epidemics resulted in over 11000 deaths, while another outbreak is currently ongoing. Since there is no FDA-approved drug so far to fight EBOV infection, there is an urgent need to focus on drug discovery. Considering the tight correlation between the high EBOV virulence and its ability to suppress the type-I Interferon (IFN-I) system, identifying molecules targeting viral protein VP24, one of the main virulence determinants blocking IFN response, is a promising novel anti-EBOV therapy approach. Hence, in the effort of finding novel EBOV inhibitors, a screening of a small set of flavonoids was performed, showing that Quercetin and Wogonin can suppress the VP24 effect on IFN-I signaling inhibition. The mechanism of action of the most active compound, Quercetin, showing an IC50 value of 7.4 μM, was characterized to significantly restore the IFN-I signaling cascade, blocked by VP24, by directly interfering with the VP24 binding to karyopherin-α and thus restoring P-STAT1 nuclear transport and IFN genes transcription. Quercetin significantly blocked viral infection, specifically targeting EBOV VP24 anti-IFN-I function. Overall, Quercetin is the first identified inhibitor of the EBOV VP24 anti-IFN function, representing a molecule interacting with a viral binding site that is very promising for further drug development aiming to block EBOV infection at the early steps.
Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOmutS (MICciprofloxacin 0.25 mg/L, MICmeropenem 2 mg/L) and CW44 (MICciprofloxacin 0.5 mg/L, MICmeropenem 4 mg/L), were investigated for 120h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin 0.4g every 8h as 1h-infusions (80% ELF penetration), meropenem 6 g/day as continuous infusion (CI; 30% and 60% ELF penetration) and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by UHPLC-PDA. For both strains, all monotherapies failed with substantial regrowth and resistance of planktonic (≥8log10 CFU/mL) and biofilm (>8log10 CFU/cm2) bacteria at 120h (MICciprofloxacin up to 8 mg/L, MICmeropenem up to 64 mg/L). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ~48h onwards and suppressed regrowth to ≤4log10 CFU/mL and ≤6log10 CFU/cm2 at 120h. Overall, both combination treatments suppressed amplification of resistance of planktonic bacteria for both strains, and biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed amplification of resistance of biofilm bacteria for PAOmutS. Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains.
Linezolid has strong antimicrobial activity against the multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. Little is known about the distribution of linezolid in tuberculosis (TB) lesions in patients with MDR-TB. The aim of this study is to evaluate the distribution of linezolid in TB lesions in patients with spinal MDR-TB. Nine patients with spinal MDR-TB were enrolled prospectively from August 2019 to February 2020. The patients received a linezolid-containing anti-TB treatment regimen and needed surgery for the removal of TB lesions. During the operation, nine blood samples, eight diseased bone tissue samples, seven pus samples and four granulation tissue samples were collected simultaneously and 2 h after the oral administration of 600 mg of linezolid. Linezolid concentrations in plasma, diseased bone tissue, pus, and granulation tissue samples were subjected to high-performance liquid chromatography–tandem mass spectrometry. At sample collection, the mean concentrations of linezolid in plasma, diseased bone tissue, pus, and granulation tissue samples of the nine patients were 11.14 ± 5.82, 5.94 ± 4.27, 11.09 ± 4.58, 14.08 ± 10.61 mg/L, respectively. The mean ratios of linezolid concentration in diseased bone/plasma, pus/plasma, and granulation/plasma were 53.84%, 91.69%, and 103.57%, respectively. The mean ratios of linezolid concentration in pus/plasma and granulation/plasma were higher than those in diseased bone/plasma, and the difference was statistically significant (t =-2.810, p = 0.015; t =-4.901, p = 0.001). In conclusion, linezolid had different concentration distributions in different types of TB infected tissues in patients with spinal MDR-TB.
Manogepix (APX001A) is the active moiety of the novel drug candidate fosmanogepix (APX001). We previously reported the broad-spectrum activity of manogepix but also observed a correlation between increased manogepix and fluconazole MICs. Here we extended this study and included isolates with acquired fluconazole resistance.
Isolates (n=835) were identified using CHROMagar, MALDI-TOF and, when needed, ITS-sequencing. EUCAST E.Def 7.3.1 susceptibility testing included manogepix, amphotericin B, anidulafungin, micafungin, fluconazole and voriconazole. Manogepix wildtype-upper-limit (WT-UL) values were established following EUCAST-principles for ECOFF setting allowing wildtype/non-wildtype classification. Drug-specific MIC correlations were investigated using Pearson's correlation.
Manogepix modal MICs were low (range 0.004-0.06 mg/L against 16/20 included species). Exceptions were C. krusei and C. inconspicua, and to a lesser extent C. kefyr and Pichia kluyveri. The activity was independent of Fks echinocandin hot-spot alterations (n=17). Adopting the WT-UL established for C. albicans, C. dubliniensis, C. glabrata, C. parapsilosis and C. tropicalis, 14/724 (1.9%) isolates were non-wildtype for manogepix. Twelve of these (85.7%) were also non-wildtype for fluconazole. A statistically significant correlation was observed between manogepix and fluconazole MICs for C. albicans, C. dubliniensis, C. glabrata, C. parapsilosis and C. tropicalis (Pearson r=0.401-0.575), but not between manogepix and micafungin or amphotericin B MICs for any species except C. tropicalis (r=0.519 for manogepix versus micafungin).
Broad-spectrum activity was confirmed for manogepix against contemporary yeast. However, a 1-4 two-fold-dilution increase in manogepix MICs is observed in a subset of isolates with acquired fluconazole resistance. Further studies on the potential underlying mechanism and implication for optimal dosing are warranted.
Methicillin-resistant Staphylococcus aureus (MRSA) has grown to become a major burden on healthcare systems. The cumulation of limited therapeutic options and worsened patient outcomes with persistent MRSA bacteremia has driven research in optimizing its initial management. The guidelines published by the Infectious Disease of America currently recommend combination therapy for refractory MRSA bacteremia, but the utility of combining antibiotics from the start of therapy is under investigation. The alternative strategy of early use of a β-lactam antibiotics in combination with vancomycin upon initial MRSA bacteremia detection has shown promise. While this concept has gained international attention, providers should give this strategy serious consideration prior to implementation. The objective of this review is to examine retrospective and prospective evidence for early combination with vancomycin and β-lactam antibiotics, as well as explore potential consequences of combination therapy.
Exploring different ways of minimising linezolid toxicity without compromising efficacy is a major quest in the treatment of drug resistant tuberculosis (TB)....
Florfenicol belongs to a class of phenicol antimicrobials widely used as feed additives and for the treatment of respiratory infections. In recent years, increasing resistance to florfenicol has been reported in Campylobacter spp., the leading foodborne enteric pathogen causing diarrheal diseases worldwide. Here, we reported the identification of fexA, a novel mobile florfenicol resistance gene in Campylobacter. Of the 100 Campylobacter jejuni strains isolated from poultry in Zhejiang, China, nine of them were shown to be fexA positive, and their whole genome sequences were further determined by integration of Illumina short-read and MinION long-read sequencing. The fexA gene was found in the plasmid of one strain and chromosomes of eight strains, and its location was verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Based on comparative analysis, the fexA gene was located within a region with the tet(L)-fexA-catA-tet(O) gene arrangement, demonstrated to be successfully transferrable among C. jejuni strains. Functional cloning indicated that acquisition of the single fexA gene significantly increased resistance to florfenicol, whereas its inactivation resulted in increased susceptibility to florfenicol in Campylobacter. Taken together, these results indicated that the emerging fexA resistance is horizontally transferable, which might greatly facilitate the adaptation of Campylobacter in food producing environments where florfenicols are frequently used.
Two non-amidated host defence peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria; two isolated from diabetic foot ulcer patients, Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3, and another from a commercial collection, Salmonella enterica serovar Typhimurium (ATCC 14028). In vitro experiments showed that the antimicrobial performance of the synthetic peptides, Pin2[G] and FA1, was modest, although FA1 was more effective than Pin2[G]. In contrast Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48-72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72-96 h of treatment. Ceftriaxone was equally effective vs. Pseudomonas but less effective vs. S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica ser. Typhimurium (ATCC 14028). Only Pin2[G], at 0.56 mg/kg, was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing poly(IC)-induced pro-inflammatory IL6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity, and suggest that other factors such as immunomodulatory activity were more important.
Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy, and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (NFX) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase. At low doses, aspirin (ASA) has been reported to protect against T. cruzi infection. We evaluated the effectiveness of BZ in combination with ASA at low doses during the acute disease phase and evaluated cardiovascular aspects and cardiac lesions in the chronic phase. ASA treatment prevented the cardiovascular dysfunction (hypertension and tachycardia) and typical cardiac lesions. Moreover, BZ+ASA-treated mice had a smaller cardiac fibrotic area than that in BZ-treated mice. These results were associated with an increase in the number of eosinophils and reticulocytes and level of nitric oxide in the plasma and cardiac tissue of ASA-treated mice relative to respective controls. These effects of ASA and BZ+ASA in chronically infected mice were inhibited by pretreatment with the LXA4 receptor antagonist, Boc-2, indicating that the protective effects of ASA are mediated by ASA-triggered lipoxin. These results emphasize the importance of exploring new drug combinations for treatments of acute phase of Chagas disease that are beneficial for chronic patients.
As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in south East Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other malaria endemic regions. Artemisinin reduced susceptibility in South East Asia (SEA) has been primarily linked to mutations in P. falciparum Kelch-13, which is currently widely recognised as a molecular marker of artemisinin resistance. However, 2 mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with artemisinin reduced susceptibility in a rodent model of malaria and some cases of UBP-1 mutation variants associating with artemisinin treatment failure have been reported in Africa and SEA. In this study, we have employed CRISPR-Cas9 genome editing and pre-emptive drug pressures to test these artemisinin susceptibility associated mutations in UBP-1 in P. berghei sensitive lines in vivo. Using these approaches, we have shown that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines while simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work has provided independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions.
Omadacycline, a novel aminomethylcycline antibiotic with activity against Gram-positive and -negative organisms, including tetracycline-resistant pathogens, received FDA approval in October, 2018 for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). A previously-developed population pharmacokinetic (PK) model based on Phase 1 intravenous and oral PK data was refined using data from infected patients. Data from 10 Phase 1 studies used to develop the previous model were pooled with data from three additional Phase 1 studies, a Phase 1b uncomplicated urinary tract infection study, one Phase 3 CABP study, and two Phase 3 ABSSSI studies. The final population PK model was a three-compartment model with first-order absorption using transit compartments to account for absorption delay following oral dosing and first-order elimination. Epithelial lining fluid (ELF) concentrations were modeled as a sub-compartment of the first peripheral compartment. A food effect on oral bioavailability was included in the model. Sex was the only significant covariate identified, with 15.6% lower clearance for females relative to males. Goodness-of-fit diagnostics indicated a precise and unbiased fit to the data. The final model, which was robust in its ability to predict plasma and ELF exposures following omadacycline administration, was also able to predict the central tendency and variability in concentration-time profiles using an external Phase 3 ABSSSI dataset. A population PK model, which described omadacycline PK in healthy subjects and infected patients, was developed and subsequently used to support pharmacokinetic-pharmacodynamic (PK-PD) and PK-PD target attainment assessments.
Introduction: This study was performed to evaluate the impacts of vanA-positivity of Enterococcus faecium (EFM) exhibiting diverse susceptibility phenotypes to glycopeptides on clinical outcomes in patients with a bloodstream infection (BSI) through a prospective, multicenter, observational study.
Methods: A total of 509 patients with an EFM BSI from eight sentinel hospitals in South Korea during a two-year period were enrolled in this study. Risk factors of the hosts and causative EFM isolates were assessed to determine associations with the 30-day mortality of EFM BSI patients via multivariable logistic regression analyses.
Results: The vanA gene was detected in 35.2% (179/509) of EFM isolates; 131 EFM isolates exhibited typical VanA phenotypes (group vanA-VanA), while the remaining 48 EFM isolates exhibited atypical phenotypes (group vanA-Atypical), including VanD (n = 43) and vancomycin-variable phenotypes (n = 5). A multivariable logistic regression indicated that vanA-positivity of causative pathogens was independently associated with the increased 30-day mortality rate in the patients with an EFM BSI; however, there was no significant difference in the survival rates between the patients of the vanA-VanA and vanA-Atypical groups (log-rank test, P = 0.904).
Conclusions: A high 30-day mortality rate was observed in patients with vanA-positive EFM BSIs, and vanA-positivity of causative EFM was an independent risk factor for early mortality irrespective of the susceptibility phenotypes to glycopeptides; thus, intensified antimicrobial stewardship is needed to improve clinical outcome of patients with vanA-positive EFM BSI.
Despite the worldwide re-emergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. We here aim to identify the target of a novel class of CHIKV inhibitors i.e. CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2 and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ~18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.
Many transferable quinolone-resistance mechanisms have been already identified in Gram-negative bacteria. The plasmid-encoded 65 amino-acid long ciprofloxacin-modifying enzyme, namely CrpP, was recently identified in Pseudomonas aeruginosa. We analyzed a collection of 100 clonally-unrelated and multidrug-resistant P. aeruginosa clinical isolates among which 46 (46%) were found positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. Those crpP-like genes were chromosomally located, as part of PAGI-like pathogenicity genomic islands.
Background: MRSA pose significant therapeutic challenges, related to their: frequency in clinical infections; innate virulence properties; and propensity for multi-antibiotic resistance. MRSA are among the most common causes of endovascular infections, including infective endocarditis (IE).
Objective: To employ transthoracic echocardiography (TTE) to evaluate the effect of exebacase, a novel direct lytic agent, in experimental aortic valve MRSA IE.
Study Design: TTE was utilized to evaluate the in vivo effect of exebacase on MRSA-infected vegetation progression when combined with daptomycin (vs daptomycin alone). Primary intravegetation outcomes were: maximum size; weights at sacrifice; and MRSA counts at infection baseline vs after 4 days of daptomycin treatment (alone or in addition to exebacase administered once on treatment Day 1).
Results: A single dose of exebacase in addition to daptomycin cleared significantly more intravegetation MRSA than daptomycin alone. This was associated with a statistical trend toward reduced maximum vegetation size in the exebacase + daptomycin vs the daptomycin-alone therapy groups (p = 0.07). Also, mean vegetation weights in the exebacase-treated group were significantly lower vs daptomycin-alone (p < 0.0001). Maximum vegetation size by TTE correlated with vegetation weight (p = 0.005). In addition, intravegetation MRSA counts in the combination group were significantly lower vs untreated controls (p<0.0001) and the daptomycin-alone group (p<0.0001).
Conclusion: This study suggests that exebacase has a salutary impact on MRSA-infected vegetation progression when combined with daptomycin, especially in terms of vegetation MRSA burden, size and weight. Moreover, TTE appears to be an efficient non-invasive tool to assess therapeutic efficacies in experimental MRSA IE.
A case of M. leprae rifampicin resistance after irregular anti-leprosy treatments since 1971 is reported. Whole-genome sequencing from four longitudinal samples indicated relapse due to acquired rifampicin resistance and not to reinfection with another strain. A putative compensatory mutation in rpoC was also detected. Clinical improvement was achieved using an alternative therapy.
One of the reasons for the lengthy tuberculosis (TB) treatment is the difficult to treat non-multiplying mycobacterial subpopulation. In order to assess the ability of (new) TB drugs to target this subpopulation, we need to incorporate dormancy models in our pre-clinical drug development pipeline. In most available dormancy models it takes a long time to create a dormant state and it is difficult to identify and quantify this non-multiplying condition.
The Mycobacterium tuberculosis 18b strain might overcome some of these problems, because it is dependent on streptomycin for growth and becomes non-multiplying after 10 days of streptomycin starvation, but still can be cultured on streptomycin-supplemented culture plates. We developed our 18b dormancy time-kill kinetic model to assess the difference in the activity of isoniazid, rifampicin, moxifloxacin and bedaquiline against log-phase growth compared to the non-multiplying M. tuberculosis subpopulation by CFU counting including a novel AUC-based approach as well as time-to-positivity (TTP) measurements.
We observed that isoniazid and moxifloxacin were relatively more potent against replicating bacteria, while rifampicin and high dose bedaquiline were equally effective against both subpopulations. Moreover, the TTP data suggest that including a liquid culture-based method could be of additional value as it identifies a specific mycobacterial subpopulation that is non-culturable on solid media.
In conclusion, the results of our study underline that the time-kill kinetics 18b dormancy model in its current form is a useful tool to assess TB drug potency and thus has its place in the TB drug development pipeline.
Anidulafungin and micafungin were quantified in cerebrospinal fluid (CSF) of critically ill adults and in cerebral cortex of deceased patients. In CSF, anidulafungin levels (<0.01-0.66 μg/ml) and micafungin levels (<0.01-0.16 μg/ml) were lower than the simultaneous plasma concentrations (0.77-5.07 μg/ml and 1.21-8.70 μg/ml, respectively). In cerebral cortex, anidulafungin and micafungin levels were 0.21-2.34 μg/g and 0.18-2.88 μg/g, respectively. Thus, MIC values of several pathogenic Candida strains exceed concentrations in CSF and in brain.
Staphylococcus aureus osteomyelitis is a debilitating infection of bone. Treatment of osteomyelitis is impaired by the propensity of invading bacteria to induce pathologic bone remodeling that may limit antibiotic penetration to the infectious focus. The nonsteroidal anti-inflammatory drug diflunisal was previously identified as an osteoprotective adjunctive therapy for osteomyelitis, based on the ability of this compound to inhibit S. aureus quorum sensing and subsequent quorum-dependent toxin production. When delivered locally during experimental osteomyelitis, diflunisal significantly limits bone destruction without affecting bacterial burdens. However, because diflunisal's "quorum-quenching" activity could theoretically increase antibiotic recalcitrance, it is critically important to evaluate this adjunctive therapy in the context of standard of care antibiotics. The objective of this study is to evaluate the efficacy of vancomycin to treat osteomyelitis during local diflunisal treatment. We first determined that systemic vancomycin effectively reduces bacterial burdens in a murine model of osteomyelitis, and identified a dosing regimen that decreases bacterial burdens without eradicating infection. Using this dosing scheme, we found that vancomycin activity is unaffected by the presence of diflunisal in vitro and in vivo. Similarly, locally-delivered diflunisal still potently inhibits osteoblast cytotoxicity in vitro and bone destruction in vivo in the presence of sub-therapeutic vancomycin. However, we also found that the resorbable polyurethane foams used to deliver diflunisal serve as a nidus for infection. Taken together, these data demonstrate that diflunisal does not significantly impact standard of care antibiotic therapy for S. aureus osteomyelitis, but also highlight potential pitfalls encountered with local drug delivery.
Aspergillus niger, the third species responsible for invasive aspergillosis has been considered as a homogeneous species until DNA-based identification uncovered many cryptic species. These species have been recently reclassified into the Aspergillus section Nigri. However little is yet known among the section Nigri about the species distribution and the antifungal susceptibility pattern of each cryptic species. A total of 112 clinical isolates collected from 5 teaching hospitals in France and phenotypically identified as A. niger were analyzed. Identification to the species level was carried out by nucleotide sequence analysis. The Minimum Inhibitory Concentrations (MICs) of itraconazole, voriconazole, posaconazole, isavuconazole and amphotericin B were determined by both the EUCAST and gradient concentration strips methods. Aspergillus tubingensis (n=51, 45.5%) and A. welwitschiae (n=50, 44.6%) were the most common species while A. niger accounted for only 6.3% (n=7). The MICs of azoles drugs were higher for A. tubingensis than for A. welwitschiae. The MIC of amphotericin B was 2 mg/L or less for all isolates. Importantly, MICs determined by EUCAST showed no correlation with those determined by gradient concentration strips methods, these latter being lower than the former (Spearman's rank correlation tests ranging - depending on the antifungal agent - from 0.01 to 0.25; p>0.4). In conclusion, A. niger should be considered as a minority species in the section Nigri. The differences in MICs between species for different azoles underline the importance of accurate identification. Significant divergences in the determination of MIC between EUCAST and gradient concentration strips methods require further investigation.
Objectives: Empiric antibiotic prescribing can be supported by guidelines and/or local antibiograms, but these have limitations. We sought to use data from a comprehensive electronic health record to use statistical learning to develop predictive models for individual antibiotics that incorporate patient-, and hospital-specific factors. This paper reports on the development and validation of these models on a large retrospective cohort.
Methods: This is a retrospective cohort study including hospitalized patients with positive urine cultures in the first 48 hours of hospitalization at a 1500 bed, tertiary care hospital over a 4.5 year period. All first urine cultures with susceptibilities were included. Statistical learning techniques, including penalized logistic regression, were used to create predictive models for cefazolin, ceftriaxone, ciprofloxacin, cefepime, and piperacillin-tazobactam. These were validated on a held-out cohort.
Results: The final dataset used for analysis included 6,366 patients. Final model covariates included demographics, comorbidity score, recent antibiotic use, recent antimicrobial resistance, and antibiotic allergies. Models had acceptable to good discrimination in the training dataset and acceptable performance in the validation dataset, with a point estimate for area under the receiver operating characteristic curve (AUC) that ranged from 0.65 for ceftriaxone to 0.69 for cefazolin. All models had excellent calibration.
Conclusion: In this study we used electronic health record data to create predictive models to estimate antibiotic susceptibilities for UTIs in hospitalized patients. Our models had acceptable performance in a held-out validation cohort.
Meropenem/vaborbactam resistance in Klebsiella pneumoniae is associated with loss of function mutations in the OmpK35 and OmpK36 porins. Here we identify two previously unknown loss of function mutations that confer cefuroxime resistance in K. pneumoniae. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor controlling capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem/vaborbactam in a KPC-3 producing K. pneumoniae isolate.
Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicentre trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90ms mean QTc-prolongation per 100ng/mL increase in piperaquine concentration. The effect of piperaquine on absolute QTc-interval estimated a mean maximum QTc-interval of 456ms (EC50=209ng/mL). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98-2.46% risk of having QTc-prolongation > 60ms in all treatment settings. Although piperaquine administration resulted in QTc-prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern.
The currently unfolding coronavirus pandemic threatens health systems and economies worldwide....